US009325785B2

a2 United States Patent 10) Patent No.: US 9,325,785 B2
Kohn et al. (45) Date of Patent: Apr. 26, 2016
(54) DEVICE, SYSTEM, AND METHOD FOR 2007/0005786 Al* 1/2007 Kumaretal. ... 709/230
CLIENT-GOVERNED SESSION 2009/0113055 Al* 4/2009 Cicchino et al. 709/226
ASC
PERSISTENCY BETWEEN ONE OR MORE 2010/0241715 AL* 972010 Tak Hoar ¢7/24
CLIENTS AND SERVERS OF A DATA
CENTER FOREIGN PATENT DOCUMENTS
(76) Inventors: Rodolfo Kohn, Cordoba (AR); Munir EP 0926608 Bl 3/2004
Ghamrawi, Hillsboro, OR (US); WO 2014004308 Al 1/2014
(Sélsd)har Mahankali, Beaverton, OR OTHER PUBLICATIONS
« - bi disclai h fthi International Search Report and Written Opinion received for Inter-
(*) Notice: Su JeCt, to any disc almer,.t e term of this national Application No. PCT/US2013/047088, mailed on Sep. 30,
patent is extended or adjusted under 35 2013, 9 pages
U.S.C. 154(b) by 106 days. “Load balancing (computing),” Wikipedia, The Free Encyclopedia,
retrieved from <http://en.wikipedia.org/w/index.php?title=Load__
(21) Appl. No.: 13/538,118 balancing_(computing)&oldid=464260975>, edited Dec. 5,2011, 5
pages.
(22) Filed: Jun. 29,2012
* cited by examiner
(65) Prior Publication Data
US 2014/0006578 Al Jan. 2, 2014 Primary Examiner — Yves Dalencourt
(74) Attorney, Agent, or Firm — Barnes & Thornburg LL.P
(51) Int.ClL
GOGF 15/173 (2006.01) 7 ABSTRACT
HO4L 29/08 (2006.01) A device, system, and method for maintaining session persis-
S. CL tency between one or more clients and one or more data
52) US.Cl y b li d da
CPC HO4L 67/1027 (2013.01); HO4L 67/1029 servers includes providing a persistent session between the
(2013.01); HO4L 67/1031 (2013.01); GO6F client(s) and data server(s) as a function of a load balancer
2212/7202 (2013.01); GOGF 2221/2141 hint header included in a message received by the load bal-
(2013.01) ancer from the client(s). The client(s) modifies the message,
(58) Field of Classification Search which may be generated by an application, to include the load
CPC ..o GO6F 2212/7202; GO6F 2221/2241 balancer hint header that identifies a location, within the
USPC ..ottt e 709/223 message, of a session ID that identifies the particular persis-
See application file for complete search history. tent session. The load balancer identifies the data server(s)
from a session-server table based on the session ID and trans-
eferences Cite mits the message to the 1dentified data server(s). The loa
56 Ref Cited its th It he identified d: The load
balancer may communicate with other load balancers, if the
U.S. PATENT DOCUMENTS load balancer is unable to locate the corresponding data
6.578.006 Bl 6/2003 Saito et al. server, to determine the location of the corresponding data
7,003,574 B1* 2/2006 Bahl ...ooococooirrn 700228 server(s).
7,296,076 B1 11/2007 Portolani
7,954,144 B1* 5/2011 Ebrahimietal. 726/12 30 Claims, 6 Drawing Sheets

40

INITIALIZE GLIENT COMPUTING DEVICE

CONFIGURE MESSAGE POLICY

ESTABLISH CONNECTION WITH
DATA CENTER

410
APPLICATION SENDING
MESSAGE TO DATA CENTER

V&

DETERMINE
PERS

WHETHER MESSAGE IS A
SISTENT MESSAGE

RETRIEVE MESSAGE POLIGY

“ANALYZE MEGSAGE USING
MESSAGE POLICY

vEs

418

o
PERSISTENT MESSAGE?

MODIFY MESSAGE TO INGLUDE
LLOAD BALANGER HINT HEADER
B

TRANSMIT MESSAGE TO DATA
CENTER

U.S. Patent

104,

CLIENT COMPUTING DEVICE]

PROCESSOR

PROCESSOR
CORE

[124 | 126

110 —| MEMORY

SUBSYSTEM

DATA L
F——{ sTorace

PERIPHERAL
DEVICES
132

106,

CLIENT COMPUTING DEVICE

PROCESSOR

PROCESSOR
CORE

|
[124 | 126

o] —| MEMORY

SUBSYSTEM

PERIPHERAL
DEVICES
132

J

COMM. L
CIRCUITRY

DATA L
——{ sTorace
COMM. | |,
CIRCUITRY

Apr. 26,2016

108

i

Sheet 1 of 6

102,

LOAD BALANCER

PROCESSOR

PROCESSOR
CORE

L
142 |

[—144

| A46

[l{e]
SUBSYSTEM

—| MEMORY

|_

PERIPHERAL
DEVICES
152

DATA L
STORAGE
comm. | [,

CIRCUITRY

US 9,325,785 B2

DATA
SERVER

FIG. 1

US 9,325,785 B2

U.S. Patent Apr. 26,2016 Sheet 2 of 6
2(\)0 104,106
[N\ GLIENT COMPUTING DEVICE
202
APPLICATION |~
(206
SESSION 204
MESSAGE POLICY PERSISTENCY
MODULE
COMMUNICATION 208
MODULE
FIG. 2
300 102
,\ '
\ LOAD BALANCER
COMMUNICATION 302
306 MODULE
/
SESSION 304
SESS'%\'E;‘E’ERVER PERSISTENCY
MODULE
LOAD BALANCER _/308
MODULE

FIG. 3

U.S. Patent Apr. 26,2016 Sheet 3 of 6 US 9,325,785 B2

l 402
L~

400 INITIALIZE GLIENT GOMPUTING DEVICE

\‘ _____________________ 404

| RETRIEVE/GENERATE SESSION ID |~

406
CONFIGURE MESSAGE POLICY |_/
J' 408
ESTABLISH CONNECTION WITH 4
DATA CENTER

410

APPLICATION SENDING
ESSAGE TO DATA CENTER?Z

DETERMINE WHETHER MESSAGE IS A _/412
PERSISTENT MESSAGE

RETRIEVE MESSAGE POLICY |_/

ANALYZE MESSAGE USING
MESSAGE POLICY

418

NO
PERSISTENT MESSAGE?

YES

MODIFY MESSAGE TO INCLUDE 420
LOAD BALANCER HINT HEADER

————————————— 422

|
I SET ACTION OF LOCATION :_,4,24
: IDENTIFIER |
____________________ |
N|
1
TRANSMIT MESSAGE TO DATA 426
CENTER

!
FIG. 4

U.S. Patent Apr. 26,2016 Sheet 4 of 6 US 9,325,785 B2

500 INITIALIZE LOAD BALANGCER _/502
\ ESTABLISH CLIENT-SERVER 504
SESSION TABLE |~
SET SESSION TIMEOUT | o
THRESHOLD T
e FROM FIG. 6
508
VESSAGE RECEIVED
512\ FROM CLIENT?
YES
SEND MESSAGE TO — 510
DATA SERVER BASED o
ON STANDARD LOAD PERSISTENT MESSAGE?
BALANCING
YES
514
| IDENTIFY LOAD BALANCER HINT HEADER |—/
+ 516
RETRIEVE CLIENT ID USING | >
LOAD BALANCER HINT HEADER
518
Y
HINT INCLUDE ACTION? TOFIG. 6
NO 520
SEARCH CLIENT-SERVER SESSION TABLE
FROMFIG. 6 (FOR CLIENT ID
522
CLIENT ID IN TABLE?
SEND MESSAGE TO DATA 526 SELEGT DATA SERVER TO
524 SERVER IDENTIFIED IN “~| HANDLE MESSAGE BASED ON
CLIENT-SERVER SESSION LOAD BALANGING
TABLE T
508 | UPDATE CLIENT-SERVER SESSION
~— TABLE WITH CLIENT ID AND
SELECTED SERVER
530 INITIATE SESSION TIMER FOR
CLIENT-SERVER PAIR
I
532
/534
REMOVE GLIENT-

SERVER PAIR FROM
CLIENT-SERVER
SESSION TABLE

FIG. 5

U.S. Patent Apr. 26,2016 Sheet 5 of 6 US 9,325,785 B2

FROMFIG. 5

550

TO BLOCK
520 OF FIG. 5

562

SEARCH ACTION?
N

CREATE ACTION?

NO

SELECT DATA SERVER TO 552
HANDLE MESSAGE BASEDON | YES
LOAD BALANCING 566
SEARCH CLIENT-SERVER
l REFERENCE TABLE FOR CLIENT ID
UPDATE CLIENT-SERVER SESSION | 554 568
TABLE WITH CLIENT IDAND | —
SELECTED SERVER YES
l 556
TNITIATE SESSION TIMER FOR_ —" s 570 Vs 572
CLIENT-SERVER PAIR
SEND MESSAGE TO DATA
SERVER IDENTIFIED IN SEND REQUEST TO OTHER
CLIENT-SERVER LOAD BALANCERS
REFERENCE TABLE

578

CLIENT ID LOCATED?

YES

SEND REDIRECT MESSAGE
TO CLIENT WITH CORRECT
LOAD BALANCER ID

580

REMOVE CLIENT-SERVER PAIR | 560
FROM CLIENT-SERVER L
REFERENCE TABLE

v

TO BLOCK
508 OF FIG. 5

FIG. 6

U.S. Patent

CLIENT
COMPUTING

DEVICE

CLIENT

COMPUTING
DEVICE

Apr. 26,2016

108

FIG. 7

US 9,325,785 B2

Sheet 6 of 6
DATA CENTER 110
(
102 DATA
SERVER
R LOAD
| BALANCER C“O
|
| DATA
I SERVER
|
|
|
! \
114
A
| 114
| (.
I DATA CENTER 110
|
: 102 DATA
| SERVER
|
L — LOAD
BALANCER 110
DATA
SERVER

US 9,325,785 B2

1

DEVICE, SYSTEM, AND METHOD FOR
CLIENT-GOVERNED SESSION
PERSISTENCY BETWEEN ONE OR MORE
CLIENTS AND SERVERS OF A DATA
CENTER

BACKGROUND

Cloud computing is a ubiquitous tool by which virtual
computing resources and services are provided to companies
and other entities. Cloud computing can offer many advan-
tages to a client company including relatively quick, efficient,
and inexpensive upgradability and scalability of computing
resources as the needs of the client company changes over
time. In cloud computing, infrastructure, platform, and/or
software may be provided by a cloud computing provider to
the client company as a “service” over a network (i.e., over the
“cloud”). For example, rather than having independent soft-
ware packages loaded on each of the client company’s com-
puters, the software may be provided to the client company as
a service accessible by any ofthe client company’s computers
using a web browser or associated lightweight application.

The cloud computing provider typically manages one or
more data centers, which facilitate access to computing
resources and services by the client company. Each data cen-
ter may include one or more data servers (e.g., web servers,
application servers, etc.) and one or more load balancers to
balance the workload from the client company computers
across the data servers using a load balancing algorithm (or
one or more “global load balancers™ to balance the workload
across the data centers). As the computing needs of the client
company grows, additional data servers and/or data centers
may be added to the company’s cloud computing resources to
satisfy the increased computing needs. To support multiple,
contemporaneous access to the virtual computing resources
and services by the company client computers, each data
server may include a local copy of data used by the computing
resources/services. To ensure each data server has access to a
complete copy of the stored data, the data is periodically
replicated across the data servers.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention described herein is illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be exag-
gerated relative to other elements for clarity. Further, where
considered appropriate, reference labels have been repeated
among the figures to indicate corresponding or analogous
elements.

FIG.1 is a simplified block diagram of at least one embodi-
ment of a system for maintaining session persistency between
a client computing device and a data server of a data center;

FIG. 2 is a simplified block diagram of at least one embodi-
ment of an environment of a client computing device of the
system of FIG. 1;

FIG. 3 is a simplified block diagram of at least one embodi-
ment of an environment of a load balancer of the system of
FIG. 1,

FIG. 4 is a simplified flow diagram of at least one embodi-
ment of a method for generating a persistent message, which
may be executed by the client computing device of FIG. 2;

FIGS. 5 and 6 are simplified flow diagrams of at least one
embodiment of a method for maintaining session persistency

10

15

20

25

30

35

40

45

50

55

60

65

2

between the client computing device and one or more data
servers, which may be executed by the load balancer of FIG.
1; and

FIG. 7 is a simplified block diagram of another embodi-
ment of a system for maintaining session persistency between
a client computing device and a data server of a data center.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are suscep-
tible to various modifications and alternative forms, specific
exemplary embodiments thereof have been shown by way of
example in the drawings and will herein be described in
detail. It should be understood, however, that there is no intent
to limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives consistent
with the present disclosure and the appended claims.

In the following description, numerous specific details
such as logic implementations, opcodes, means to specify
operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
present disclosure. It will be appreciated, however, by one
skilled in the art that embodiments of the disclosure may be
practiced without such specific details. In other instances,
control structures, gate level circuits and full software instruc-
tion sequences have not been shown in detail in order not to
obscure the invention. Those of ordinary skill in the art, with
the included descriptions, will be able to implement appro-
priate functionality without undue experimentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Embodiments of the invention may be implemented in
hardware, firmware, software, or any combination thereof.
Embodiments of the invention implemented in a computer
system may include one or more bus-based interconnects
between components and/or one or more point-to-point inter-
connects between components. Embodiments of the inven-
tion may also be implemented as instructions carried by or
stored on a transitory or non-transitory machine-readable
(e.g., computer-readable) medium, which may be read and
executed by one or more processors. A machine-readable
medium may be embodied as any device, mechanism, or
physical structure for storing or transmitting information in a
form readable by a machine (e.g., a computing device). For
example, a machine-readable medium may be embodied as
read only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; flash
memory devices; mini- or micro-SD cards, memory sticks,
electrical signals, and others.

In the drawings, specific arrangements or orderings of
schematic elements, such as those representing devices, mod-
ules, instruction blocks and data elements, may be shown for
ease of description. However, it should be understood by
those skilled in the art that the specific ordering or arrange-

US 9,325,785 B2

3

ment of the schematic elements in the drawings is not meant
to imply that a particular order or sequence of processing, or
separation of processes, is required. Further, the inclusion of
a schematic element in a drawing is not meant to imply that
such element is required in all embodiments or that the fea-
tures represented by such element may not be included in or
combined with other elements in some embodiments.

In general, schematic elements used to represent instruc-
tion blocks may be implemented using any suitable form of
machine-readable instruction, such as software or firmware
applications, programs, functions, modules, routines, pro-
cesses, procedures, plug-ins, applets, widgets, code frag-
ments and/or others, and that each such instruction may be
implemented using any suitable programming language,
library, application programming interface (API), and/or
other software development tools. For example, some
embodiments may be implemented using Java, C++, and/or
other programming languages. Similarly, schematic elements
used to represent data or information may be implemented
using any suitable electronic arrangement or structure, such
as a register, data store, table, record, array, index, hash, map,
tree, list, graph, file (of any file type), folder, directory, data-
base, and/or others.

Further, in the drawings, where connecting elements, such
as solid or dashed lines or arrows, are used to illustrate a
connection, relationship or association between or among
two or more other schematic elements, the absence of any
such connecting elements is not meant to imply that no con-
nection, relationship or association can exist. In other words,
some connections, relationships or associations between ele-
ments may not be shown in the drawings so as not to obscure
the disclosure. In addition, for ease of illustration, a single
connecting element may be used to represent multiple con-
nections, relationships or associations between elements. For
example, where a connecting element represents a commu-
nication of signals, data or instructions, it should be under-
stood by those skilled in the art that such element may repre-
sent one or multiple signal paths (e.g., a bus), as may be
needed, to effect the communication.

Referring now to FIG. 1, in one embodiment, a system 100
for maintaining session persistency between a client and one
or more data servers comprises a load balancer 102 config-
ured to receive messages from one or more client computing
devices 104, 106 over a network 108 and forward such mes-
sages to a selected one or more data servers 110, 112 of a data
center 114. To do so, as discussed in more detail below, the
client computing device 104, 106 is configured to modify
particular outgoing messages to include a load balancer hint
header that identifies a location within the message at which
a session identifier (ID) is located. The load balancer 102
recognizes such messages based on presence of the load
balancer hint header and retrieves the session ID from the
message based on the data included in the load balancer hint
header. The load balancer 102 maintains a session-server
table that correlates the session ID to one or more particular
data servers 110, 112. As such, the load balancer 102 may
maintain a persistent session between one or more particular
client computing devices 104, 106 and one or more particular
data servers 110, 112 by referencing the session-server table
to determine the appropriate data server(s) 110, 112 to receive
the message. Once determined, the load balancer 102 for-
wards the message to the appropriate data server(s) 110, 112.
In this way, eventual consistency-derived problems are sub-
stantially avoided and session persistency is maintained
between the one or more client computing devices 104, 106
and one or more data servers 110, 112 by the load balancer

10

15

20

25

30

35

40

45

50

55

60

65

4

102 as a function of the modified messages sent by the client
computing device(s) 104, 106.

Conversely, in a typical cloud computing system, eventual
consistency-related problems can be difficult to avoid. For
example, a typical cloud computing system arranged as
shown in FIG. 1 may exhibit a read-after-write problem under
certain conditions. Such condition may occur, for example,
when a client computing device writes new data to one data
server (i.e., the associated load balancer routes the write mes-
sage to a first data server) and subsequently reads data from a
different data server (i.e., the associated load balancer routes
the read message to a second data server) that has not been
updated via replication yet. Such a read-after-write problem
occurs due to the temporal delay of data server replication
across the cloud computing system.

Some cloud computing systems attempt to alleviate the
read-after-write problem and ensure eventual consistency by
using cookies or data additional to, and separate from, the
messages being sent by the client computing devices. The use
of such cookies or additional, separate data messages can
increase the overhead and latency of the cloud computing
systems. Other cloud computing systems may embed data in
the message body, which is used to establish a “sticky ses-
sion” as is known in the art. However, such systems require
the load balancer to parse every received message body to
scan for the embedded stickiness data. Such parsing and
scanning can significantly affect load balancer performance
because the load balancer has no indication where in the
message such stickiness data is located and, as such, must
search the entire message, or a significant portion thereof, to
locate the stickiness data.

Referring back to FIG. 1, each of the client computing
devices 104, 106 of the system 100 may be embodied as any
type of computing device capable of performing the functions
described herein. For example, each of the client computing
devices 104, 106 may be embodied as, without limitation, a
computer, a desktop computer, a personal computer (PC), a
tablet computer, a laptop computer, a notebook computer, a
mobile computing device, a smart phone, a cellular tele-
phone, a handset, a messaging device, a work station, a net-
work appliance, a web appliance, a distributed computing
system, a multiprocessor system, a processor-based system, a
consumer electronic device, a digital television device, a set
top box, and/or any other computing device configured to
store and access data in the data center 114. In some embodi-
ments, one or more of the computing devices 104, 106 may be
embodied as a server (e.g., a customer web portal or data
server, which acts as a client to the data center 114). Addi-
tionally, although the system 100 is illustrated in FIG. 1 as
including two client computing devices 104, 106, it should be
appreciated that the system 100 may include additional client
computing devices in other embodiments.

In the illustrative embodiment of FIG. 1, the client com-
puting device 104 includes a processor 120, an I/O subsystem
124, a memory 126, a data storage 128, a communication
circuitry 130, and one or more peripheral devices 132. In
some embodiments, several of the foregoing components
may be incorporated on a motherboard or main board of the
client computing device 104, while other components may be
communicatively coupled to the motherboard via, for
example, a peripheral port. Furthermore, it should be appre-
ciated that the client computing device 104 may include other
components, sub-components, and devices commonly found
in a computer and/or computing device, which are not illus-
trated in FIG. 1 for clarity of the description.

The processor 120 of the client computing device 104 may
be embodied as any type of processor capable of executing

US 9,325,785 B2

5

software/firmware, such as a microprocessor, digital signal
processor, microcontroller, or the like. The processor 120 is
illustratively embodied as a single core processor having a
processor core 122. However, in other embodiments, the pro-
cessor 120 may be embodied as a multi-core processor having
multiple processor cores 122. Additionally, the client com-
puting device 104 may include additional processors 120
having one or more processor cores 122.

The I/O subsystem 124 of the client computing device 104
may be embodied as circuitry and/or components to facilitate
input/output operations with the processor 120 and/or other
components of the client computing device 104. In some
embodiments, the /O subsystem 124 may be embodied as a
memory controller hub (MCH or “northbridge”), an input/
output controller hub (ICH or “southbridge™), and a firmware
device. In such embodiments, the firmware device of the I/O
subsystem 124 may be embodied as a memory device for
storing Basic Input/Output System (BIOS) data and/or
instructions and/or other information (e.g., a BIOS driver
used during booting of the client computing device 104).
However, in other embodiments, /O subsystems having other
configurations may be used. For example, in some embodi-
ments, the I/O subsystem 124 may be embodied as a platform
controller hub (PCH). In such embodiments, the memory
controller hub (MCH) may be incorporated in or otherwise
associated with the processor 120, and the processor 120 may
communicate directly with the memory 126 (as shown by the
hashed line in FIG. 1). Additionally, in other embodiments,
the I/O subsystem 124 may form a portion of a system-on-a-
chip (SoC) and be incorporated, along with the processor 120
and other components of the client computing device 104, on
a single integrated circuit chip.

The processor 120 is communicatively coupled to the I/O
subsystem 124 via a number of signal paths. These signal
paths (and other signal paths illustrated in FIG. 1) may be
embodied as any type of signal paths capable of facilitating
communication between the components of the client com-
puting device 104. For example, the signal paths may be
embodied as any number of point-to-point links, wires,
cables, light guides, printed circuit board traces, vias, bus,
intervening devices, and/or the like.

The memory 126 of the client computing device 104 may
be embodied as or otherwise include one or more memory
devices or data storage locations including, for example,
dynamic random access memory devices (DRAM), synchro-
nous dynamic random access memory devices (SDRAM),
double-data rate synchronous dynamic random access
memory device (DDR SDRAM), mask read-only memory
(ROM) devices, erasable programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM)
devices, flash memory devices, and/or other volatile and/or
non-volatile memory devices. The memory 126 is communi-
catively coupled to the /O subsystem 124 via a number of
signal paths. Although only a single memory device 126 is
illustrated in FIG. 1, the client computing device 104 may
include additional memory devices in other embodiments.
Various data and software may be stored in the memory 126.
For example, one or more operating systems, applications,
programs, libraries, and drivers that make up the software
stack executed by the processor 120 may reside in memory
126 during execution.

The data storage 128 may be embodied as any type of
device or devices configured for the short-term or long-term
storage of data such as, for example, memory devices and
circuits, memory cards, hard disk drives, solid-state drives, or
other data storage devices. In the illustrative embodiment, the
client computing device 104 maintains a message policy data-

20

25

30

40

45

55

6

base 206 (see FIG. 2) stored in the data storage 128. As
discussed in more detail below, the message policy database
206 includes policies or rules for determining which outgoing
messages are persistent messages and, as such, should be
modified to include the load balancer hint header. Of course,
the client computing device 104 may store, access, and/or
maintain other data in the data storage 128 in other embodi-
ments.

The communication circuitry 130 of the client computing
device 104 may include any number of devices and circuitry
for enabling communications between the client computing
device 104 and the load balancer 102 over the network 108 as
discussed in more detail below. The communication circuitry
130 may be configured to use any one or more, or combina-
tion thereof, communication protocols to communicate with
the load balancer 102 such as, for example, a wired network
communication protocol (e.g., TCP/IP), a wireless network
communication protocol (e.g., Wi-Fi®, WiMAX), a cellular
communication protocol (e.g., Wideband Code Division
Multiple Access (W-CDMA)), and/or other communication
protocols.

In some embodiments, the client computing device 104
may also include one or more peripheral devices 132. Such
peripheral devices 132 may include any number of additional
input/output devices, interface devices, and/or other periph-
eral devices. For example, in some embodiments, the periph-
eral devices 132 may include a display, graphics circuitry,
keyboard, mouse, speaker system, and/or other input/output
devices, interface devices, and/or peripheral devices.

The client computing device 106 may be substantially
similar to the client computing device 104 and include similar
components, which have been identified in FIG. 1 with com-
mon reference numbers. As such, the description provided
above of the components of the client computing device 104
may be equally applicable to those similar components of the
client computing device 106 and are not repeated herein so as
not to obscure the present disclosure. Of course, it should be
appreciated that in some embodiments the client computing
devices 104, 106 (or other client computing devices of the
system 100) may be dissimilar to each other. For example, the
client computing devices of system 100 may be embodied as
various types of computing devices different from each other
(e.g., a desktop computer, a mobile computer, a tablet com-
puter, a smart phone, or other computing device) and include
components typically found in such corresponding comput-
ing devices.

As discussed in more detail below, the client computing
devices 104, 106 are configured to transmit messages to the
load balancer 102 of the data center 114 over the network 108.
The network 108 may be embodied as any number of various
wired and/or wireless networks. For example, the network
108 may be embodied as or otherwise include a wired or
wireless local area network (LAN), a wired or wireless wide
area network (WAN), and/or a publicly-accessible, global
network such as the Internet. As such, the network 108 may
include any number of additional devices, such as additional
computers, routers, and switches, to facilitate communica-
tions between the client computing devices 104, 106 and the
load balancer 102 of the data center 114.

As discussed above, the data center 114 includes the load
balancer 102 and one or more data servers 110, 112. The load
balancer 102 is configured to receive messages from the client
computing devices 104, 106 and route such messages to one
(or more) of the data servers 110, 112. If a received message
is a persistent message (i.e., the message includes a load
balancer hint header), the load balancer 102 is configured to
retrieve a session ID, which identifies the particular message

US 9,325,785 B2

7

session, from the message as a function of the load balancer
hint header and determine which data server(s) 110, 112 to
route the persistent message based on the retrieved session ID
as discussed in more detail below. Although the data center
114 is shown in FIG. 1 as including only a single load bal-
ancer 102 and data servers 110, 112, it should be appreciated
that, in other embodiments, the data center 114 may include
additional load balancers and one, two, or more data servers
communicatively coupled to each load balancer. Addition-
ally, as shown in FIG. 7, the system 100 may include multiple
data centers 114 in some embodiments.

The load balancer 102 may be embodied as any type of data
server or similar computing device capable of performing the
functions described herein. In the illustrative embodiment of
FIG. 1, the load balancer 102 includes a processor 140, an [/O
subsystem 144, a memory 146, a data storage 148, a commu-
nication circuitry 150, and one or more peripheral devices
152. In some embodiments, several of the foregoing compo-
nents may be incorporated on a motherboard or main board of
the load balancer 102, while other components may be com-
municatively coupled to the motherboard via, for example, a
peripheral port. Furthermore, it should be appreciated that the
load balancer 102 may include other components, sub-com-
ponents, and devices commonly found in a sever and/or com-
puting device, which are not illustrated in FIG. 1 for clarity of
the description.

The processor 140 of the load balancer 102 may be embod-
ied as any type of processor capable of executing software/
firmware, such as a microprocessor, digital signal processor,
microcontroller, or the like. The processor 140 is illustratively
embodied as a single core processor having a processor core
142. However, similar to processor 120, the processor 140
may be embodied as a multi-core processor having multiple
processor cores 142 in other embodiments. Additionally, the
load balancer 102 may include additional processors 140
having one or more processor cores 142.

The I/O subsystem 144 of the load balancer 102 may be
embodied as circuitry and/or components to facilitate input/
output operations with the processor 140 and/or other com-
ponents of the load balancer 102. In some embodiments, the
1/0 subsystem 144 may be embodied as a memory controller
hub (MCH or “northbridge”™), an input/output controller hub
(ICH or “southbridge”), and a firmware device. In such
embodiments, the firmware device of the /O subsystem 144
may be embodied as a memory device for storing Basic
Input/Output System (BIOS) data and/or instructions and/or
other information (e.g., a BIOS driver used during booting of
the client computing device 104). However, in other embodi-
ments, [/O subsystems having other configurations may be
used. For example, in some embodiments, the [/O subsystem
144 may be embodied as a platform controller hub (PCH). In
such embodiments, the memory controller hub (MCH) may
be incorporated in or otherwise associated with the processor
140, and the processor 140 may communicate directly with
the memory 146 (as shown by the hashed line in FIG. 1).
Additionally, in other embodiments, the /O subsystem 144
may form a portion of a system-on-a-chip (SoC) and be
incorporated, along with the processor 140 and other compo-
nents of the load balancer 102, on a single integrated circuit
chip.

The processor 140 is communicatively coupled to the [/O
subsystem 144 via a number of signal paths. These signal
paths (and other signal paths illustrated in FIG. 1) may be
embodied as any type of signal paths capable of facilitating
communication between the components of the load balancer
102. For example, the signal paths may be embodied as any

20

25

30

40

45

50

8
number of point-to-point links, wires, cables, light guides,
printed circuit board traces, vias, bus, intervening devices,
and/or the like.

The memory 146 of the load balancer 102 may be embod-
ied as or otherwise include one or more memory devices or
data storage locations including, for example, dynamic ran-
dom access memory devices (DRAM), synchronous dynamic
random access memory devices (SDRAM), double-data rate
synchronous dynamic random access memory device (DDR
SDRAM), mask read-only memory (ROM) devices, erasable
programmable ROM (EPROM), electrically erasable pro-
grammable ROM (EEPROM) devices, flash memory devices,
and/or other volatile and/or non-volatile memory devices.
The memory 146 is communicatively coupled to the 1/O
subsystem 144 via a number of signal paths. Although only a
single memory device 146 is illustrated in FIG. 1, the load
balancer 102 may include additional memory devices in other
embodiments. Various data and software may be stored in the
memory 146. For example, one or more operating systems,
applications, programs, libraries, and drivers that make up the
software stack executed by the processor 140 may reside in
memory 146 during execution.

The data storage 148 may be embodied as any type of
device or devices configured for the short-term or long-term
storage of data such as, for example, memory devices and
circuits, memory cards, hard disk drives, solid-state drives, or
other data storage devices. In the illustrative embodiment, the
load balancer 102 maintains a session-server table 306 (see
FIG. 3) stored in the data storage 148. As discussed in more
detail below, the session-server table 306 cross-references, or
otherwise correlates, session IDs to data servers 110, 112.
That is, when a persistent session is established between one
or more client computing devices 104, 106 and one or more
data servers 110, 112, the load balancer updates the session-
server table 306 with the session ID-to-data server pair(s) for
the particular persistent session. Of course, the load balancer
102 may store, access, and/or maintain other data in the data
storage 148 in other embodiments.

The communication circuitry 150 of the load balancer 102
may include any number of devices and circuitry for enabling
communications between the load balancer 102 and the client
computing devices 104, 106 over the network 108. The com-
munication circuitry 150 may be configured to use any one or
more communication protocols to effect such communication
as discussed above with regard to the communication cir-
cuitry 130 of the client computing device 104. Additionally,
in some embodiments, the load balancer 102 may also include
one or more peripheral devices 152. Such peripheral devices
152 may include any number of additional input/output
devices, interface devices, and/or other peripheral devices
commonly associated with a server or computing device.

Similar to the load balancer 102, the data servers 110, 112
may be embodied as any type of server (e.g., a web server) or
similar computing device capable of performing the func-
tions described herein. As such, each data server 110, 112
may include components and features similar to the load
balancer 102, such as a processor, [/O subsystem, memory,
data storage, communication circuitry, and various peripheral
devices, which are not illustrated in FIG. 1 for clarity of the
present description. The data servers 110, 112 may be embod-
ied as independent servers or computing devices separate
from the load balancer 102 as shown in FIG. 1. Alternatively,
in some embodiments, one or more of the data servers 110,
112 may be incorporated in, or otherwise form part of, the
load balancer 102.

In the illustrative embodiment of FIG. 1, each data server
110, 112 maintains one or more databases 160 in which

US 9,325,785 B2

9

various server-side applications, client-based application
data, and other data is stored. In cloud computing implemen-
tations, the data servers 110, 112 may execute various server-
side applications corresponding to applications executed on
the client computing devices 104, 106 (e.g., stand-alone or
browser-based application). Additionally, the data servers
110, 112 may store data received from the client computing
devices 104, 106 and/or data generated by the client- and
server-side applications in the database 160. As discussed
above, the data stored in the databases 160 may be periodi-
cally replicated across all data servers 110, 112 of the data
center (and across data centers) to ensure each data server
maintains a complete and current data set.

Referring now to FIG. 2, in one embodiment, the client
computing devices 104, 106 establish an environment 200
during operation. The illustrative environment 200 includes
one or more applications 202, a session persistency module
204, the message policy database 206, and a communication
module 208. The applications 202 may be embodied as any
type of software or firmware application configured to com-
municate with the data center 114 during execution. For
example, in cloud computing implementations, the applica-
tions 202 may be embodied as browser-based applications
and/or “thin” client-side applications configured to commu-
nicate with corresponding server-side applications executed
on one or more data servers 110, 112. Alternatively, in other
embodiments, the applications 202 may be embodied as
stand-alone, full featured applications configured to commu-
nicate with the data center 114 to store data remotely.

The session persistency module 204 may be embodied as
hardware, firmware, software, or a combination thereof. In
some embodiments, the session persistency module 204 may
be embodied as an application program interface incorpo-
rated in or otherwise interconnected with the application(s)
202. Alternatively, in other embodiments, the session persis-
tency module 204 may be incorporated in the communication
stack (e.g., TCP/IP stack) of the communication module 208.
The session persistency module 204 is configured to identify
persistent messages sent from the application(s) 202 and
modify such messages to include a load balancer hint header,
which identifies the location (and, in some embodiments, the
length) of a session ID included in the message. The session
persistency module 204 may identify the persistent messages
by accessing the message policy 206, which may be stored in
the data storage 128.

The message policy 206 includes rules and/or policies that
are used by the session persistency module 204 to determine
which outgoing messages sent from the application(s) 202 are
persistent messages (i.e., initiate or belong to a client-server
persistent session). For example, in some embodiments, the
message policy 206 may provide rules or policies for identi-
fying persistent messages based on the message’s end points
(e.g., the internet protocol (IP) address or media access con-
trol (MAC) address ofload balancer 102 or data center 114 to
which the message is directed), the type of message (e.g., the
type of hypertext transfer protocol (HTTP) method used in
the message, the type of Simple Object Access Protocol
(SOAP) action used in the message, etc.), other data included
in the HTTP or other protocol payload, and/or other data that
may be used by the session persistency module 204 to identify
those outgoing messages that should be considered persistent
messages.

Once identified as a persistent message, the session persis-
tency module 204 modifies the persistent message to include
aload balancer hint header. As discussed in more detail below
with regard to FIG. 4, the load balancer hint header includes
a location identifier that identifies the location of a session ID

5

10

15

20

25

30

35

40

45

50

55

60

65

10

within the message and a length identifier that identifies the
length of the session ID. Additionally, in some embodiments,
the load balancer hint header may include an action that
identifies an action to be performed by the load balancer 102.
After the persistent message has been modified to include the
load balancer hint header, the persistent message is transmit-
ted to the data center 114 over the network 108 via the com-
munication module 208 using a suitable communication pro-
tocol as discussed above. Similar to the session persistency
module 204, the communication module 208 may be embod-
ied as hardware, firmware, software, or a combination
thereof.

Referring now to FIG. 3, in one embodiment, the load
balancer 102 may establish an environment 300 during opera-
tion. The illustrative environment 300 includes a communi-
cation module 302, a session persistency module 304, the
session-server table or database 306, and a load balancer
module 308. The communication module 302 may be embod-
ied as hardware, firmware, software, or a combination thereof
and is configured to receive the messages from the client
computing devices 104, 106 over the network 108. The com-
munication module 302 passes the received messages to the
session persistency module 304 for analysis and handling.

Similar to the session persistency module 204, the session
persistency module 304 may be embodied as hardware, firm-
ware, software, or a combination thereof. The session persis-
tency module 304 is configured to identify persistent mes-
sages from those messages received from the client
computing device 104, 106. To do so, the session persistency
module 304 determines whether the particular message
includes a load balancer hint header. If so, the session persis-
tency module 204 retrieves the session ID included in the
persistent message based on data included in the load bal-
ancer hint header as discussed in more detail below. The
retrieved session 1D is compared to the session-server table
306 to determine which data server(s) 110, 112 to which that
particular session 1D has been assigned. The communication
module 302 subsequently routes the persistent message to the
identified data server(s) 110, 112. Alternatively, if the session
1D is not located in the session-server table 306, the message
is provided to the load balancer module 308, which selects
one or more data servers 110, 112 to which to route the
message based on, or otherwise using, a typical load balanc-
ing algorithm (e.g., based on the work load of the data servers
110, 112). The session persistency module 304 subsequently
updates the session-server table 306 with the newly assigned
session-server pair.

Referring now to FIG. 4, in use, the client computing
devices 104, 106 may execute a method 400 for generating a
persistent message. The method 400 begins with block 402 in
which the client computing device 104, 106 is initialized,
which may include any suitable initialization process. In
some embodiments, the client computing device 104, 106
may retrieve, or otherwise generate, the session ID in block
404, which may be embodied as any type of data that identi-
fies a particular persistent session. For example, if the session
ID has already been generated and assigned by the load bal-
ancer 102, the client computing device 104, 106 may retrieve
the session ID in block 404. Alternatively, the session ID may
be requested from the load balancer 102 by the client com-
puting device 104, 106 or simply assigned by the load bal-
ancer to the first message associated with a new session.
Further still, in some embodiments, the session ID may be
generated by the client computing device 104. In such
embodiments, the session ID may be embodied as a data word
that uniquely identifies the client computing device 104, 106
from other client computing devices such as a media access

US 9,325,785 B2

11

control (MAC) address or a globally unique identifier
(GUID). In such embodiments, the session ID may be
assigned to, or otherwise associated with, the client comput-
ing device 104, 106 prior to execution of the method 400 and
retrieved in block 404. In other embodiments, the session ID
may be embodied as a data word or other data that is randomly
generated in block 404 using a suitable random generator to
produce a substantially unique identifier. In such embodi-
ments, the session ID may uniquely identify a persistent
session such that a single client computing device 104, 106
may maintain multiple persistent sessions.

In block 406, the client computing device 104, 106 may
also configure the message policy 206. As discussed above,
the message policy includes rules and/or policies that may be
used by the session persistency module 204 of the client
computing device 104, 106 to determine which outgoing
messages are persistent messages. As such, the client com-
puting device 104, 106 may establish, update, or otherwise
maintain such rules and policies in block 406.

The client computing device 104, 106 subsequently estab-
lishes a connection with the data center 114 over the network
108 in block 408. In block 410, the session persistency mod-
ule 204 of the client computing device 104, 106 determines
whether the application(s) 202 executed on the client com-
puting device 104, 106 is attempting to send a message to the
data center 114. If so, the method 400 advances to block 412
in which the client computing device 104, 106 determines
whether the outgoing message is a persistent message (i.e., a
message belonging to a persistent session or a message that
should initiate a persistent session). To do so, the session
persistency module 204 retrieves the message policy 206 in
block 414 and analyzes the outgoing message using the mes-
sage policy in block 416. As discussed above, the rules and
policy of the message policy 206 may be embodied as any
type of rule or policy for determining whether the message is
a persistent message such as, for example, rules or policies
based on the message’s end point, the type of message, or
other data.

If'the session persistency module 204 determines the mes-
sage is a persistent message in block 418, the method 400
advances to block 420 in which the session persistency mod-
ule 204 modifies the message to include a load balancer hint
header. As discussed above, the load balancer hint header
identifies the location within the message at which the session
ID canbe found. As such, the load balancer hint header allows
the load balancer 102 to retrieve quickly the session 1D with-
out the necessity of scanning or analyzing the complete mes-
sage. The load balancer hint header may be embodied as any
type of data that identifies the location of the session 1D
within the message. For example, in embodiments in which
HTTP messages are used, the load balancer hint header may
have the form of:

LB-HINT:X,Y\r\n

wherein “LB-HINT” is the header tag that identifies the
header as a load balancer hint header, “X” is a location iden-
tifier that identifies the location of the session ID within the
message, “Y” is a length identifier that identifies the length of
the session ID, and “/r/n” are end tags that identify the end of
the load balancer hint. Of course, it should be appreciated that
the header tag may be embodied as any type of header tag that
identifies load balancer hint header and need not be “LB-
HINT” in other embodiments depending on, for example, the
type of message. The location identifier may identify the
location of the session 1D using an absolute value (i.e., the
exact location within the message) or a relative value (i.e., the
location of the session ID within the message relative to the

10

15

20

25

30

35

40

45

50

55

60

65

12

location ofthe load balancer hint). The location identifier may
identify the location of the session ID using any suitable
location metric such as anumber of lines, bytes, characters, or
the like. Similarly, the length identifier may identify the
length of the session ID using any suitable metric such as the
number of characters, bytes, or words of the session ID. In
some embodiments, the session ID may not be inherently
included in the message. In such embodiments, the session
persistency module 204 may also modify the message to
include the session ID in block 422 (either before or after the
inclusion of the load balancer hint header.).

Additionally, in embodiments in which the system 100
includes multiple data centers 114 as shown in FIG. 7 or in
which each data center 114 includes multiple load balancers,
the load balancer hint header my include an action type that
identifies an action to be performed by the load balancer 102.
For example, in embodiments in which HTTP messages are
used, the load balancer hint header may have the form of:

LB-HINT:X,Y;[action]\r\n

wherein “action” defines the action type to be performed
by the load balancer 102. The action type may be embodied as
any type of identifier suitable for identifying the requested
action. In some embodiments, the session persistency module
204 may choose from a set of predefined action types and set
the requested action in the load balancer header in block 424.
For example, in one particular embodiment, a “create” action
type or a “search” action type may be used. In such embodi-
ments, the “create” action type instructs the load balancer 102
that a new persistent session should be initiated using the
current session. The “search” action type instructs the load
balancer 102 that a persistent session already exists for the
session ID included in the message and that the load balancer
102 should communicate with other load balancers to locate
the persistent session should the current load balancer 102
have no record of that session (i.e., there is no session-server
pair in the local session-server table 306). After the message
has been modified as needed in blocks 420, 422, and/or 424,
the communication module 208 transmits the modified mes-
sage to the load balancer 102 in block 426.

Referring back to block 418, if the persistency module 204
determines that the message is not a persistent message, the
method 400 advances to block 426. In block 426, the com-
munication module 208 transmits the message to the load
balancer 102 as normal. That is, the message is treated as a
normal (non-persistent) message to be sent to the load bal-
ancer.

Referring now to FIGS. 5 and 6, in use, the load balancer
102 may execute a method 500 for maintaining session per-
sistency between one or more client computing device 104,
106 and one or more data servers 110, 112. The method 500
begins with block 502 in which the load balancer is initial-
ized, which may include any suitable initialization process.
For example, in some embodiments, the load balancer 102
may establish, or otherwise maintain, the session-server table
306 in block 504. Additionally, in some embodiments, each
persistent session is assigned a timeout threshold such that
each persistent session lasts for only a predetermined or ref-
erence time period. In such embodiments, the session timeout
threshold may be selected, determined, or otherwise set in
block 506. In some embodiments, the magnitude of the ses-
sion timeout threshold is selected to allow data replication
across the data servers 110, 112 (i.e., the persistent session is
maintained only long enough to ensure data replication across
the data servers 110, 112).

After the load balancer 102 has been initialized, the load
balancer 102 determines whether a message has been

US 9,325,785 B2

13

received from a client computing device 104, 106 in block
508. If so, the session persistency module 304 of the load
balancer 102 determines whether the received message is a
persistent message in block 510. To do so, the session persis-
tency module 304 may determine whether the message
includes aload balancer hint header. If the session persistency
module 304 determines that the received message is not a
persistent message (i.e., does not include a load balancer hint
header), the method 500 advances to block 512 in which the
load balancer 102 routes the received message to a data server
110, 112 that is selected by the load balancer module 308
using a typical load balancing algorithm.

If, however, the received message is determined to be a
persistent message (i.e., the message includes a load balancer
hint header), the session persistency module 304 of the load
balancer 102 identifies the load balancer hint header in block
514. Subsequently, in block 516, the session persistency mod-
ule 304 retrieves the session ID as a function of the load
balancer hint header (i.e., using the data included in the load
balancer hint header). For example, in embodiments in which
the load balancer hint header includes a location identifier and
alength identifier, the session persistency module 304 locates
the session ID within the message using the location identifier
and retrieves the session ID using the length identifier. As
discussed above, the location identifier may identify the abso-
lute or relative location of the session ID.

In block 518, the session persistency module 304 deter-
mines whether the load balancer hint head also includes an
action type. If not, the method 500 advances to block 520 in
which the session persistency module 304 searches the local
session-server table 306 using the retrieved session ID to
determine whether a persistent session for that session ID is
active. If the session persistency module 304 locates the ses-
sion ID in the session-server table 306 in block 522, the
method 500 advances to block 524 in which the communica-
tion module 302 of the load balancer 102 routes the message
to the data server(s) 110, 112 identified as paired with the
session ID in the session-server table 306. Additionally, in
some embodiments, the load balancer 102 may use data or
criteria (e.g., load balancing, state of replication, etc.) in
addition to the session ID to determine which one or more
data servers 110, 112 to which to route the message. In block
532, the session persistency module 304 determines whether
the timeout threshold has been reached for any persistent
session included in the session-server table 306. If so, the
method 500 advances to block 534 wherein the session-server
pair for any timed-out persistent session is removed from the
session-server table 306. If not, or after the session-server pair
has been removed from the session-server table 306, the
method 500 loops back to block 508 in which the load bal-
ancer 102 monitors for messages from the client computing
devices 104, 106.

Referring back to block 522, if the session ID is not
included in the session-server table 306, the method 500
advances to block 526 in which the load balancer module 308
of'the load balancer 102 selects one or more data servers 110,
112 for the new persistent session (i.e., a data server(s) 110,
112 to receive messages from the client computing device
104, 106 for the new persistent session). As discussed above,
the load balancer module 308 may use any suitable load
balancing algorithm or technique to select the data server 110,
112. Once selected, the session persistency module 304
updates the session-server table 306 with the new session
ID-server pair(s) using the selected data server(s) 110, 112 in
block 528. In block 530, a session timer is initiated for the
newly established persistent session (i.e., for the new session-
server pair(s)). In some embodiments, the session timer is

10

15

20

25

30

35

40

45

50

55

60

65

14

recorded in the session-server table 306 in association with
the session-server pair(s) and may be embodied as, for
example, the time at which the new persistent session was
established. The method 500 subsequently advances to block
532 in which the session persistency module 304 determines
whether the timeout threshold has been reached for any per-
sistent session included in the session-server table 306 as
discussed above. If so, the method 500 advances to block 534
wherein the session-server pair for any timed-out persistent
session is removed from the session-server table 306. If not,
or after the session-server pair has been removed from the
session-server table 306, the method 500 loops back to block
508 in which the load balancer 102 monitors for messages
from the client computing devices 104, 106.

Referring back to block 518, if the session persistency
module 304 determines that the load balancer hint header
does include an action type, the method 500 advances to block
550 (see FIG. 6). In block 550, the session persistency module
304 determines whether the action type is a “create” action. If
so, the method 500 advances to blocks 552, 554, and 556 in
which the load balancer module 308 selects one or more data
servers 110, 112 for the new persistent session, updates the
session-server table 306, and initiates a session timer for the
newly established persistent session as discussed above with
regard to blocks 526, 528, and 530. After the new persistent
session has been established, the method 500 advances to
block 558 in which the session persistency module 304 deter-
mines whether the timeout threshold has been reached for any
persistent session included in the session-server table 306. If
so, the method 500 advances to block 560 wherein the ses-
sion-server pair(s) for any timed-out persistent session is
removed from the session-server table 306. If not, or after the
session-server pair has been removed from the session-server
table 306, the method 500 subsequently loops back to block
508 in which the load balancer 102 monitors for messages
from the client computing devices 104, 106.

Referring back to block 550, if the action type of the load
balancer hint header is determined not to be a “create” action,
the method 500 advances to block 462 in which the session
persistency module 304 determines whether the action type is
a “search” action. If not, the method 500 loops back to block
520 (see FIG. 5) in which the message is handled as amessage
having no action type. However, if the action type is deter-
mined to be a “search” action, the method 500 advances to
block 566 in which the session persistency module 304
searches the local session-server table 306 using the retrieved
session ID to determine whether a persistent session for that
session ID is active as discussed above with regard to block
520. Ifthe session persistency module 304 determines that the
session ID is included in the local session-server table 306,
the method advances to block 570 in which the communica-
tion module 302 of the load balancer 102 routes the message
to the data server(s) 110, 112 identified as paired with the
session ID in the local session-server table 306. The method
500 subsequently advances to block 558 in which the session
persistency module 304 determines whether the timeout
threshold has been reached for any persistent session
included in the session-server table 306 as discussed above. If
so, the method 500 advances to block 560 wherein the ses-
sion-server pair(s) for any timed-out persistent session is
removed from the session-server table 306. If not, or after the
session-server pair has been removed from the session-server
table 306, the method 500 subsequently loops back to block
508 in which the load balancer 102 monitors for messages
from the client computing devices 104, 106.

Referring back to block 568, if the session persistency
module 304 determines that the session ID is not included in

US 9,325,785 B2

15

the local session-server table 306 (i.e., the persistent session
is not being maintained by the respective load balancer 102),
the method 500 advances to block 572 in which the load
balancer 102 sends a request to other load balancers within
the data center 114 or within other data centers 114 of the
system 100 (see FIG. 7). In so doing, the load balancer 102
requests the other load balancers to search their local session-
server table 306 for the session ID to determine which of one
or more of the other load balancers is maintaining that per-
sistent session. Subsequently, in block 578, the load balancer
102 determines whether the session ID has been located by
another load balancer (e.g., whether an affirmative response
from the other load balancer was received by the load bal-
ancer 102). If so, in block 580, the load balancer 102 sends a
redirect message to the client computing device 104, 106
providing identification data (e.g., an IP address) of the load
balancer(s) maintaining the particular persistent session.
However, if the session ID is not located, an error message is
sent to the client computing device 104, 106 in block 582 and
the method loops back to block 508 in which the load balancer
102 monitors for messages from the client computing devices
104, 106.

EXAMPLES

Tlustrative examples of the devices, systems, and methods
disclosed herein are provided below. An embodiment of the
devices, systems, and methods may include any one or more,
and any combination of; the examples described below.

In one example, a load balancer to balance workload from
a plurality of client computing devices across a plurality of
data servers may include a communication module to receive
a message from a client computing device of the plurality of
client computing devices and a session persistency module to
provide a persistent session between one or more client com-
puting devices and one or more data servers as a function of a
load balancer hint header included in the message. The load
balancer hint header may identify a location, within the mes-
sage, of a session identifier that identifies the persistent ses-
sion.

In an example, the session persistency module to retrieve
the session identifier as a function of the load balancer hint
header, compare the session identifier to a session-server
table to identify at least one data server to receive the mes-
sage, and transmit the message to the identified at least one
data server. In an example, the session persistency module
may remove the session identifier from the session-server
table in response to expiration of a session timer associated
with the persistent session between the one or more client
computing devices and the identified at least one data server.
In an example, the session persistency module may select,
using a load balancing algorithm, a data server from the
plurality of data servers in response to the session identifier
not being included in the session-server table and transmit the
message to the selected data server. In an example, the session
persistency module may, in response to selecting the data
server, initiate a session timer associated with the persistent
session between the one or more client computing devices
and the selected data server.

In an example, the load balancer hint header may include a
location identifier that identifies the location, within the mes-
sage, of the session identifier. In an example, the location
identifier may include an offset value that identifies the loca-
tion, within the message, of the session identifier relative to
one of (i) a location of the load balancer hint header in the
message or (ii) the beginning of the message. In an example,
the load balancer hint header may further include a length

10

15

20

25

30

35

40

45

50

55

60

65

16

identifier that identifies a length of the session identifier. In an
example, the session persistency module may obtain the ses-
sion identifier from the message as a function of the location
identifier and the length identifier, compare the session iden-
tifier to a local session-server table to identify a data server to
receive the message as a function of the session identifier, and
transmit the message to the identified data server.

In an example, the load balancer hint header may include a
location identifier that identifies the location within the mes-
sage of the session identifier and an action type that indicates
an action to be performed by the load balancer. In such an
example, the session persistency module may perform one of
a plurality of actions based on the action type included in the
load balancer hint header. In an example, the session persis-
tency module, in response to the load balancer hint header
including a corresponding action type, may select, using a
load balancing algorithm, a data server from the plurality of
data servers to receive the message and transmit the message
to the selected data server. In an example, the session persis-
tency module may, in response to selecting the data server,
initiate a session timer associated with the persistent session.
In an example, the session persistency module, in response to
the load balancer hint header including a corresponding
action type, may determine whether the session identifier is
included in a local session-server table and transmit, in
response to determining that the session identifier is not
included in the local session-server table, a request to at least
one other load balancer to determine whether the session
identifier is included in a session-server table managed by the
other load balancer. In an example, the session persistency
module may receive an acknowledgment from another load
balancer that the session identifier is included in a session-
server table managed by the other load balancer and transmit,
in response to the acknowledgement, a redirect message to
the client computing device that sent the message. The redi-
rect message may include load balancer identification data
that identifies the load balancer that manages the session-
server table in which the session identifier is included. In an
example, the session persistency module may receive a
response message from the corresponding data server identi-
fied in the session-server table managed by the other load
balancer to be associated with the session identifier and
retransmit the response message to the client computing
device that sent the message. In an example, the session
persistency module, in response to determining that the ses-
sion identifier is included in the local session-server table,
may identify one or more data servers of the plurality of data
servers from the local session-server table as a function of the
session identifier and transmit the message to the identified
one or more data servers.

In an example, the load balancer hint header may include a
label that identifies the load balancer hint header, a location
identifier that identifies the location within the message of the
session identifier, a length identifier that identifies the length
of the session identifier, and an action type that indicates an
action to be performed by the load balancer. In an example,
the load balancer hint header comprises a HyperText Markup
Language header. In an example, the session identifier
uniquely identifies a persistent session between the client
computing device that sent the message and one of the data
servers.

In another example, a client computing device to commu-
nicate with one or more data servers of a data center may
include a session persistency module to modify a message to
be sent from an application executing on the client computing
device to the one or more data servers to include a load
balancer hint header that identifies a location, within the

US 9,325,785 B2

17

message, of a session identifier that identifies a persistent
session between the client computing device and the one or
more data server. The client computing device may also
include a communication module to transmit the modified
message to a load balancer that manages the one or more data
servers.

In an example, the load balancer hint header may include a
location identifier that identifies the location, within the mes-
sage, of the session identifier. In an example, the location
identifier may include an offset value that identifies the loca-
tion, within the message, of the session identifier relative to
one of (i) a location of the load balancer hint header in the
message or (ii) the beginning of the message. In an example,
the load balancer hint header may further include a length
identifier that identifies a length of the session identifier. In an
example, the load balancer hint header may further include an
action type that indicates an action to be performed by the
load balancer. In an example, the session persistency module
may determine the action to be performed by the load bal-
ancer and set the action type to indicate the action to be
performed by the load balancer. In an example, the action type
may indicate that the load balancer is to create a persistent
session between the client computing device and the one or
more data servers. In an example, the action type may indicate
that the load balancer is to communicate with another load
balancer to locate a corresponding data server with which the
client computing device has a current persistent session.

In an example, the session persistency module may deter-
mine whether the message is a persistent message to be
included in a persistent session between the client computing
device and the one or more data servers based on a message
policy stored on the client computing device. In an example,
the message policy may identify persistent messages based
on at least one of: a destination of the message, a Hyptertext
Transfer Protocol method included in the message, and a
Simple Object Access Protocol action included in the mes-
sage. In an example, the session persistency module may
generate the session identifier and further modify the message
by including the session identifier. In an example, the session
identifier may uniquely identify the client computing device
from other computing devices communicating with the load
balancer. In an example, the session identifier may uniquely
identify a persistent session between the client computing
device and the one or more data servers. In an example, the
session identifier may uniquely identify a persistent session
between the load balancer and the one or more data servers.

In another example, a method to provide a persistent ses-
sion between a client computing device and a plurality of data
servers may include receiving, with a load balancer, a mes-
sage from the client computing device; determining, with the
load balancer, a location of a session identifier within the
message based on a load balancer hint header included in the
message, the session identifier identifying the persistent ses-
sion; comparing, with the load balancer, the session identifier
to a session-server table managed by the load balancer to
identify at least one data server of the plurality of data servers
to receive the message; and transmitting the message from the
load balancer to the identified at least one data server. In an
example, the method may further include removing the ses-
sion identifier from the session-server table in response to
expiration of a session timer associated with the persistent
session. In an example, the method may further include
selecting, using a load balancing algorithm, a data server from
the plurality of data servers in response to the session identi-
fier not being included in the session-server table and trans-
mitting the message to the selected data server. Additionally,
in an example, the method may further include initiating, in

10

15

20

25

30

35

40

45

50

55

60

65

18

response to selecting the data server, a session timer associ-
ated with the persistent session.

In an example, determining the location of the session
identifier may include determining the location of the session
identifier as a function of (i) a location identifier of the load
balancer hint header that identifies the location, within the
message, of the session identifier and (ii) a length identifier
that identifies a length of the session identifier. In an example,
determining the location of the session identifier as a function
of the location identifier may include determining the loca-
tion of the session identifier, within the message, as a function
of'the location identifier and the location of the load balancer
hint header within the message.

In an example, the method may further include determin-
ing an action to be performed by the load balancer based on an
action type included in the load balancer header, wherein the
action type indicates the action to be performed by the load
balancer. In an example, the method may further include, in
response to determining a corresponding action based on the
action type, (i) selecting, using a load balancing algorithm, a
data server form the plurality of data servers to receive the
message and (ii) transmitting the message from the load bal-
ancer to the selected data server. In an example, the method
may further include, in response to determining a correspond-
ing action based on the action type, (i) determining whether
the session identifier is included in a local session-server table
and (ii) transmitting, in response to determining that the ses-
sion identifier is not included in the local session-server table,
a request to at least one other load balancer to determine
whether the session identifier is included in a session-server
table managed by the other load balancer. In an example, the
method may further include receiving an acknowledgment, in
response to the request, from another load balancer that the
session identifier is included in a session-server table man-
aged by the other load balancer and transmitting, in response
to the acknowledgement, a redirect message to the client
computing device that sent the message, wherein the redirect
message includes load balancer identification data that iden-
tifies the load balancer that manages the session-server table
in which the session identifier is included. In an example, the
method may further include receiving a response message, in
response to the request, from the corresponding data server
identified in the session-server table managed by the other
load balancer to be associated with the session identifier and
retransmitting the response message to the client computing
device that sent the message.

In another example, a load balancer may include a proces-
sor and a memory having stored therein a plurality of instruc-
tions that when executed by the processor cause the load
balancer to perform any of the methods described above.
Additionally, in another example, one or more machine read-
able media may include a plurality of instructions stored
thereon that in response to being executed result in a load
balancer performing any of the methods described above.

In another example, a method for persistent session com-
munication between a client computing device and a data
server of a plurality of data servers may include modifying a
message to be sent from an application executing on the client
computing device to the data server to include a load balancer
hint header that identifies a location, within the message, of a
session identifier that identifies the persistent session and
transmitting the modified message to a load balancer that
manages the data server. In an example, modifying the mes-
sage may include setting a location identifier of the load
balancer hint header to identify the location, within the mes-
sage, of the session identifier. In an example, modifying the
message may include setting a location identifier of the load

US 9,325,785 B2

19

balancer hint header to identify the location, within the mes-
sage, of the session identifier relative to one of (i) alocation of
the load balancer hint header in the message or (ii) the begin-
ning of the message. In an example, modifying the message
may include setting a length identifier of the load balancer
hint header that identifies a length of the session identifier. In
an example, modifying the message may include setting an
action type of the load balancer hint header that indicates an
action to be performed by the load balancer.

In an example, setting the action type may include setting
the action type to indicate that the load balancer is to create a
persistent session between the client computing device and
the data server. In an example, setting the action type may
include setting the action type to indicate that the load bal-
ancer is to communicate with another load balancer to locate
a corresponding data server with which the client computing
device has a current persistent session.

In an example, the method may further include determin-
ing whether the message is a persistent message to be
included in a persistent session between the client computing
device and the data server based on a message policy stored
on the client computing device. In an example, determining
whether the message is a persistent message may include
determining whether the message is a persistent message
based on at least one of: a destination of the message, a
Hypertext Transfer Protocol method included in the message,
and a Simple Object Access Protocol action included in the
message. In an example, the method may further include
generating the session identifier and further modifying the
message by including the session identifier.

In another example, a client computing device may include
aprocessor and a memory having stored therein a plurality of
instructions that when executed by the processor cause the
client computing device to perform any of the methods
described above. Additionally, in another example, one or
more machine readable media may include a plurality of
instructions stored thereon that in response to being executed
result in a client device performing any of the methods
described above.

While the disclosure has been illustrated and described in
detail in the drawings and foregoing description, such an
illustration and description is to be considered as exemplary
and not restrictive in character, it being understood that only
illustrative embodiments have been shown and described and
that all changes and modifications consistent with the disclo-
sure and recited claims are desired to be protected.

The invention claimed is:

1. A load balancer to balance workload from a plurality of
client computing devices across a plurality of data servers, the
load balancer comprising:

one or more processors; and

one or more data storage devices having stored therein a

plurality of instructions that, when executed by the one
or more processors, cause the load balancer to:

receive a message from a client computing device of the

plurality of client computing devices, wherein the mes-
sage comprises a message header and a message body;
and

provide a persistent session between one or more client

computing devices and one or more data servers as a
function of a load balancer hint header included in the
message header of the message, wherein the load bal-
ancer hint header comprises an offset value that identi-
fies, relative to (i) a location of the load balancer hint
header or (ii) the beginning of the message, a location of
a session identifier that is located within the message

15

20

25

30

35

40

45

55

20

body of the message, and wherein the session identifier
identifies the persistent session.

2. The load balancer of claim 1, wherein the plurality of
instructions, when executed by the one or more processors,
further cause the load balancer to:

retrieve the session identifier as a function of the load

balancer hint header;

compare the session identifier to a session-server table to

identify at least one data server to receive the message;
and

transmit the message to the identified at least one data

server.

3. The load balancer of claim 1, wherein the load balancer
hint header further comprises a length identifier that identifies
a length of the session identifier.

4. The load balancer of claim 1, wherein the load balancer
hint header further comprises an action type that indicates an
action to be performed by the load balancer, and

wherein the plurality of instructions, when executed by the

one or more processors, further cause the load balancer
to perform one of a plurality of actions based on the
action type included in the load balancer hint header.

5. The load balancer of claim 4, wherein the plurality of
instructions, when executed by the one or more processors,
further cause the load balancer, in response to the load bal-
ancer hint header including a corresponding action type, to:

determine whether the session identifier is included in a

local session-server table, and
transmit, in response to determining that the session iden-
tifier is not included in the local session-server table, a
request to at least one other load balancer to determine
whether the session identifier is included in a session-
server table managed by the other load balancer.
6. The load balancer of claim 5, wherein the plurality of
instructions, when executed by the one or more processors,
further cause the load balancer to:
receive an acknowledgment from another load balancer
that the session identifier is included in a session-server
table managed by the other load balancer, and

transmit, in response to the acknowledgement, a redirect
message to the client computing device that sent the
message, wherein the redirect message includes load
balancer identification data that identifies the load bal-
ancer that manages the session-server table in which the
session identifier is included.

7. The load balancer of claim 5, wherein the plurality of
instructions, when executed by the one or more processors,
further cause the load balancer to:

receive a response message from the corresponding data

server identified in the session-server table managed by
the other load balancer to be associated with the session
identifier; and

retransmit the response message to the client computing

device that sent the message.

8. The load balancer of claim 1, wherein the load balancer
hint header further comprises a label that identifies the load
balancer hint header, the location identifier, a length identifier
that identifies the length of the session identifier, and an action
type that indicates an action to be performed by the load
balancer.

9. A client computing device to communicate with one or
more data servers of a data center, the client computing device
comprising:

one or more processors; and

US 9,325,785 B2

21

one or more data storage devices having stored therein a
plurality of instructions that, when executed by the one
or more processors, cause the client computing device
to:
modify a message to be sent from an application execut-
ing on the client computing device to the one or more
data servers to include a load balancer hint header in
a message header of the message, wherein the load
balancer hint header comprises an offset value that
identifies, relative to (i) a location of the load balancer
hit header or (ii) the beginning of the message, a
location of a session identifier that is located within
the message body of the message, wherein the session
identifier identifies the persistent session between the
client computing device and the one or more data
servers; and

to transmit the modified message to a load balancer that
manages the one or more data servers.

10. The client computing device of claim 9, wherein the
load balancer hint header comprises a location identifier that
identifies the location, within the message, of the session
identifier.

11. The client computing device of claim 10, wherein the
load balancer hint header further comprises a length identifier
that identifies a length of the session identifier.

12. The client computing device of claim 11, wherein the
load balancer hint header further comprises an action type
that indicates an action to be performed by the load balancer.

13. The client computing device of claim 12, wherein the
plurality of instructions, when executed by the one or more
processors, further cause the load balancer to:

determine the action to be performed by the load balancer;
and

set the action type to indicate the action to be performed by
the load balancer.

14. The client computing device of claim 12, wherein the
action type indicates that the load balancer is to communicate
with another load balancer to locate a corresponding data
server with which the client computing device has a current
persistent session.

15. A method to provide a persistent session between a
client computing device and a plurality of data servers, the
method comprising:

receiving, with a load balancer, a message from the client
computing device, wherein the message includes a mes-
sage header and a message body;

determining, with the load balancer, a location of a session
identifier based on a load balancer hint header included
in the message header of the message, wherein the load
balancer hint header comprises an offset value that iden-
tifies, relative to (i) a location of the load balancer hint
header or (ii) the beginning of the message, a location of
the session identifier within the message body of the
message, and wherein the session identifier identifies the
persistent session;

comparing, with the load balancer, the session identifier to
a session-server table managed by the load balancer to
identify at least one data server of the plurality of data
servers to receive the message; and

transmitting the message from the load balancer to the
identified at least one data server.

16. The method of claim 15, wherein determining the loca-
tion of the session identifier comprises determining the loca-
tion of the session identifier, within the message, as a function
of the offset value and the location of the load balancer hint
header within the message.

10

15

20

25

30

35

40

45

50

55

60

65

22

17. The method of claim 15, further comprising determin-
ing an action to be performed by the load balancer based on an
action type included in the load balancer header, wherein the
action type indicates the action to be performed by the load
balancer.

18. The method of claim 17, further comprising, in
response to determining a corresponding action based on the
action type, (i) determining whether the session identifier is
included in a local session-server table and (ii) transmitting,
in response to determining that the session identifier is not
included in the local session-server table, a request to at least
one other load balancer to determine whether the session
identifier is included in a session-server table managed by the
other load balancer.

19. The method of claim 18, further comprising:

receiving an acknowledgment, in response to the request,

from another load balancer that the session identifier is
included in a session-server table managed by the other
load balancer, and
transmitting, in response to the acknowledgement, a redi-
rect message to the client computing device that sent the
message, wherein the redirect message includes load
balancer identification data that identifies the load bal-
ancer that manages the session-server table in which the
session identifier is included.
20. The method of claim 18, further comprising:
receiving a response message, in response to the request,
from the corresponding data server identified in the ses-
sion-server table managed by the other load balancer to
be associated with the session identifier; and

retransmitting the response message to the client comput-
ing device that sent the message.

21. A method for persistent session communication
between a client computing device and a data server of a
plurality of data servers, the method comprising:

modifying a message to be sent from an application execut-

ing on the client computing device to the data server to
include a load balancer hint header in a message header
of the message, wherein the load balancer hint header
comprises an offset value that identifies, relative to (i) a
location ofthe load balancer hint header or (ii) the begin-
ning ofthe message, a location of a session identifier that
identifies the persistent session, wherein the session
identifier is located within the message body of the mes-
sage; and

transmitting the modified message to a load balancer that

manages the data server.

22. The method of claim 21, wherein modifying the mes-
sage comprises setting the offset value of the load balancer
hint header to identify the location, within the message, of the
session identifier.

23. The method of claim 22, wherein modifying the mes-
sage comprises setting a length identifier of the load balancer
hint header that identifies a length of the session identifier.

24. The method of claim 23, wherein modifying the mes-
sage comprises setting an action type of the load balancer hint
header that indicates an action to be performed by the load
balancer.

25. The method of claim 24, wherein setting the action type
comprises setting the action type to indicate that the load
balancer is to create a persistent session between the client
computing device and the data server.

26. The method of claim 24, wherein setting the action type
comprises setting the action type to indicate that the load
balancer is to communicate with another load balancer to
locate a corresponding data server with which the client com-
puting device has a current persistent session.

US 9,325,785 B2

23

27. One or more non-transitory, machine-readable storage
media comprising a plurality of instructions stored thereon
that, when executed, cause a load balancer to:

receive a message from the client computing device,

wherein the message includes a message header and a
message body;
determine a location of a session identifier based on a load
balancer hint header included in the message header of
the message, wherein the load balancer hint header com-
prises an offset value that identifies, relative to (i) a
location of'the load balancer hint header or (ii) the begin-
ning of the message, a location of the session identifier
within the message body of the message, and wherein
the session identifier identifies the persistent session;

comparing, with the load balancer, the session identifier to
a session-server table managed by the load balancer to
identify at least one data server of the plurality of data
servers to receive the message; and

transmitting the message from the load balancer to the

identified at least one data server.

28. The one or more non-transitory, machine-readable stor-
age media of claim 27, wherein to determine the location of
the session identifier comprises to determine the location of

20

24

the session identifier, within the message, as a function of'the
offset value and the location of the load balancer hint header
within the message.

29. One or more non-transitory, machine-readable storage
media comprising a plurality of instructions stored thereon
that, when executed, cause a client computing device to:

modify a message to be sent from an application executing

on the client computing device to the data server to
include a load balancer hint header in a message header
of the message, wherein the load balancer hint header
comprises an offset value that identifies, relative to (i) a
location ofthe load balancer hint header or (ii) the begin-
ning ofthe message, a location of a session identifier that
identifies the persistent session, wherein the session
identifier is located within the message body of the mes-
sage; and

transmit the modified message to a load balancer that man-

ages the data server.

30. The one or more non-transitory, machine-readable stor-
age media of claim 29, wherein to modify the message com-
prises to set the offset value of the load balancer hint header to
identify the location, within the message, of the session iden-
tifier.

